美佳特科技
MEIJIATE TECHNOLOGY售前售中售后完整的服務(wù)體系
誠信經(jīng)營質(zhì)量保障價(jià)格合理服務(wù)完善目錄
收起
一. DDR標(biāo)準(zhǔn)發(fā)展和 DDR5簡介
DDR是什么?
DDR內(nèi)存原理
DDR工作原理
存儲器分類
如何計(jì)算DDR帶寬?
SDRAM和DDR區(qū)別是什么?
DDR5和DDR4的區(qū)別
DDR發(fā)展歷程
DDR4和DDR5的性能差距?
2.1.1 速率的提升
2.1.2 電壓的降低
2.1.3 DIMM新電源架構(gòu)
2.1.4 DIMM通道架構(gòu)
2.1.5 更長的突發(fā)長度
2.1.6 更大容量的 DRAM
DDR5主要特點(diǎn)
DDR5測試方案
二. 發(fā)送端測試方法
首先來看 UI定義 - UI是啥?
眼圖測試
如何計(jì)算總體抖動?
三、DDR5測試新方法
3.2 接收端RX測試挑戰(zhàn)
DDR、LPDDR的協(xié)議解碼測試總結(jié)
內(nèi)存(DRAM-Random Access Memory)作為當(dāng)代數(shù)字系統(tǒng)最主要的核心部件之一,從各種終端設(shè)備到核心層數(shù)據(jù)處理 和存儲設(shè)備,從各種消費(fèi)類電子設(shè)備到社會各行業(yè)專用設(shè)備,是各種級別的 CPU 進(jìn)行數(shù)據(jù)處理運(yùn)算和緩存的buke或缺的周轉(zhuǎn)“倉庫",一個強(qiáng)大的核心處理單元也必須配備一個高速運(yùn)轉(zhuǎn)的寬通路的數(shù)據(jù)訪問和存儲單元。近 20 多年來,DRAM也快速地從 20 世紀(jì)末期的 SDRAM 發(fā)展到 21 世紀(jì) DDR RAM。在 21 世紀(jì)的qian10 年,DDR標(biāo)準(zhǔn)主要是個人信息處理終端的代表設(shè)備----PC 和個人工作站類驅(qū)動,快速從 DDR1 演進(jìn)到 DDR3。而近 10 年來,進(jìn)入移動互聯(lián)時(shí)代后海量數(shù)據(jù)爆發(fā),AI 和深度學(xué)習(xí)以及 5G驅(qū)動,在個人信息終端上基本可以勝任的 DDR4標(biāo)準(zhǔn),明顯顯得力不從心。今天 DDR5正在昂首闊步地配合以 PCIE5.0 32Gbps 為代表的第5代高速 I/O 數(shù)據(jù)傳輸走向最終的市場化。
下圖展示的是內(nèi)存 RAM 20多年來的發(fā)展和信號特點(diǎn)以及設(shè)計(jì)演進(jìn)。
圖 1 DDR標(biāo)準(zhǔn)發(fā)展和信號特點(diǎn)演進(jìn)
一些DDR基本概念
DDR的全拼是Double Data Rate SDRAM雙倍數(shù)據(jù)速率同步動態(tài)隨機(jī)存取內(nèi)存, 主要用在電腦的內(nèi)存。DDR的特點(diǎn)就是走線數(shù)量多,速度快,操作復(fù)雜,給測試和分析帶來了很大的挑戰(zhàn)。
目前DDR技術(shù)已經(jīng)發(fā)展到了DDR5,性能更高,功耗更低,存儲密度更高,芯片容量大幅提升,他的數(shù)據(jù)速率在3200-6400MT/s。
DDR本質(zhì)上不需要提高時(shí)鐘頻率就能加倍提高SDRAM的速度,它允許在時(shí)鐘的上升沿和下降沿讀出數(shù)據(jù),因而其速度是標(biāo)準(zhǔn)SDRAM的兩倍,至于地址與控制信號則與傳統(tǒng)SDRAM相同,仍在時(shí)鐘上升沿進(jìn)行數(shù)據(jù)判斷。
DDR核心技術(shù)點(diǎn)就在于雙沿傳輸和預(yù)取Prefetch.
DDR的頻率包括核心頻率,時(shí)鐘頻率和數(shù)據(jù)傳輸頻率。核心頻率就是內(nèi)存的工作頻率;DDR1內(nèi)存的核心頻率是和時(shí)鐘頻率相同的,到了DDR2和DDR3時(shí)才有了時(shí)鐘頻率的概念,就是將核心頻率通過倍頻技術(shù)得到的一個頻率。數(shù)據(jù)傳輸頻率就是傳輸數(shù)據(jù)的頻率。
推薦閱讀:
DDR 存儲器概述、開發(fā)周期和挑戰(zhàn)
“由于改進(jìn)的制造工藝降低了成本,現(xiàn)在選擇的技術(shù)是 DDR SDRAM,是雙倍數(shù)據(jù)速率同步動態(tài)隨機(jī)存取存儲器的縮寫。"
計(jì)算機(jī)組成
計(jì)算機(jī)組成結(jié)構(gòu) (Computer Architecture)是計(jì)算機(jī)系統(tǒng)的核心,它定義了計(jì)算機(jī)的基本工作原理和設(shè)計(jì)模式。計(jì)算機(jī)的組成可以分成以下3大類:中央處理器(CPU)、存儲器和輸入/輸出子系統(tǒng)。
中央處理器 (CPU)
CPU用于數(shù)據(jù)的運(yùn)算,在大部分的體系結(jié)合中,它有3個組成部分:算數(shù)運(yùn)算單元 (ALU)、控制單元、奇存器組。
控制單元 (Control Unit):負(fù)責(zé)指揮整個計(jì)算機(jī)系統(tǒng)的操作,解釋并執(zhí)行指令,控制其他硬件的工作。
算術(shù)邏輯單元 (ALU):執(zhí)行所有算術(shù)運(yùn)算(如加減乘除)和邏輯運(yùn)算(如與、或、非等),是計(jì)算機(jī)執(zhí)行指令的核心部分。
寄存器 (Registers):這是CPU中用于存儲數(shù)據(jù)的高速行儲器,用來臨時(shí)存放指令、數(shù)據(jù)和操作結(jié)果。
半導(dǎo)體存儲器
隨著科技的發(fā)展,半導(dǎo)體存儲器成為了現(xiàn)代計(jì)算機(jī)存儲器的主流,分為兩類主要類型:
靜態(tài)隨機(jī)存儲器 (SRAM):SRAN利用晶體管存儲數(shù)據(jù),速度非??欤總€比特需要更多的晶體管,導(dǎo)致成本高,密度低。主要應(yīng)用在需要高速綏存的場景,如CPU的緩存 (L1、 L2、 L3)
動態(tài)隨機(jī)存儲器 (DRAM):DRAM利用電容存儲數(shù)據(jù),電容逐漸放電,因此需要不斷刷新來維持?jǐn)?shù)據(jù)存儲。相對于SRAM,DRAM的存儲密度更高,成本較低,因此廣泛用于主內(nèi)存 (RAM)。隨看集成電路制造技術(shù)的進(jìn)步,DRAN容量和性能持續(xù)提升。
現(xiàn)代內(nèi)存技術(shù)
DDR(雙倍數(shù)據(jù)速率)內(nèi)存:從DDR到如今的DDR5,隨看數(shù)據(jù)傳輸速度和功耗的改進(jìn),DDR系列內(nèi)存成為計(jì)算機(jī)和服務(wù)器的主流內(nèi)存。DDR技術(shù)從2000年開始引入,持續(xù)更新,DDR5的帶完和容量比早期版本有了大幅提升。
閃存 (Flash Memory):閃存 (Flash Memory)是一種長壽命的非易失性的存儲器,數(shù)據(jù)刪除不是以單個的字節(jié)為單位而是以固定的區(qū)塊為單位。閃存是電子可擦除只讀存儲器(EEPROM) 的變種,閃存與EEPROM不同的是,EEPROM能在字節(jié)水平上進(jìn)行刪除和重寫而不是整個芯片擦寫,而閃存的大部分芯片需要塊擦除。由于其斷電時(shí)仍能保存數(shù)據(jù),閃存通常被用來保存設(shè)置信息,如在電腦的B1OS(基本程序)、PDA(個人數(shù)字助理)、數(shù)碼相機(jī)中保存資料等。
LPDDR(低功耗DDR):隨看移動設(shè)備的普及,低功耗內(nèi)存技術(shù)成為了關(guān)鍵,LPDDR(低功耗雙倍數(shù)據(jù)速率)內(nèi)存在手機(jī)、平板等設(shè)備上應(yīng)用廣泛,從LPDDR1發(fā)展到LPDDR5,強(qiáng)調(diào)功耗和性能之間的平衡。
HBM (High Bandwidth Memory,高帶亮內(nèi)存): HBM是一種高性能DRAM,具有更高的帶完和更低的功耗,主要用于圖形處理器(GPU) 和高性能計(jì)算 (HPC)領(lǐng)域。HBM通過垂直堆愛的方式來提升存儲密度和傳輸速度,減少了延遲和能耗。
基本DDR subsystem架構(gòu)圖:DDRC +DDRphy +SDRAM顆粒,DDR IP一般包括DDR Controller和DDR PHY,內(nèi)部涉及的內(nèi)容包括但不限于以下幾個方面:數(shù)據(jù)保序、仲裁、zuiyou調(diào)度、協(xié)議狀態(tài)機(jī)設(shè)計(jì)、防餓死機(jī)制、bypass通路、快速切頻、DDR training
當(dāng)時(shí)鐘脈沖達(dá)到一定頻率時(shí),DDR存儲器才開始工作,此后發(fā)生的就是“讀-存-讀"的過程。在此過程中,器件芯片會從主在取數(shù)據(jù),然后與入數(shù)據(jù)在儲區(qū)。當(dāng)寫入操作完成后,再從存儲區(qū)中取出數(shù)據(jù),並將其傳輸?shù)教幚砥髦?,然后根?jù)需要將數(shù)據(jù)處理,再把最終結(jié)果返回到主存。
DDR 的雙倍數(shù)據(jù)傳輸率其實(shí)就是每個時(shí)鐘周期內(nèi)讀寫一次數(shù)據(jù),即DDR芯片可以在每個時(shí)鐘周期內(nèi)分別完成“讀-存"和“存-讀"操作,從而提高存儲器的傳輸效率。
DDR內(nèi)存通過雙倍數(shù)據(jù)速率的傳輸方式,結(jié)合多通道傳輸和數(shù)據(jù)校驗(yàn)等技術(shù),提高了數(shù)據(jù)傳輸效率和可靠性。這使得 DDR 成為了計(jì)算機(jī)內(nèi)存的主流技術(shù)。
內(nèi)存芯片 - DDR內(nèi)存模塊中包含多個內(nèi)存芯片,每個芯片有自己的存儲單元。每個存儲單元都有一個地址,用于在讀取或?qū)懭霐?shù)據(jù)時(shí)進(jìn)行尋址。
數(shù)據(jù)總線 - DDR內(nèi)存模塊連接到計(jì)算機(jī)的內(nèi)存控制器,通過數(shù)據(jù)總線進(jìn)行數(shù)據(jù)傳輸。數(shù)據(jù)總線可以同時(shí)傳輸多個數(shù)據(jù)位,例如 64 位或 128位。
時(shí)鐘信號 - DDR內(nèi)存模塊通過時(shí)鐘信號進(jìn)行同步操作。時(shí)鐘信號用來控制數(shù)據(jù)的傳輸速率,每個時(shí)鐘周期內(nèi)有一個上升沿和一個下降沿。上升沿時(shí),數(shù)據(jù)從內(nèi)存芯片傳輸?shù)綌?shù)據(jù)總線;下降沿時(shí),數(shù)據(jù)從數(shù)據(jù)總線傳輸?shù)絻?nèi)存芯片。
預(yù)充電 - 在開始傳輸數(shù)據(jù)之前,DDR內(nèi)存模塊會先進(jìn)行預(yù)充電操作。預(yù)充電是將存儲單元中的電荷恢復(fù)到初始狀態(tài),以確保接下來的數(shù)據(jù)傳輸是準(zhǔn)確的。
數(shù)據(jù)傳輸 - DDR 采用了多通道的數(shù)據(jù)傳輸方式,即同時(shí)傳輸多個數(shù)據(jù)位。這樣可以在每個時(shí)鐘周期內(nèi)傳輸更多的數(shù)據(jù)。
存儲器分為內(nèi)部存儲器(內(nèi)存),外部存儲器(外存),緩沖存儲器(緩存)以及閃存這幾個大類。
內(nèi)存也稱為主存儲器,位于系統(tǒng)主機(jī)板上,可以同CPU直接進(jìn)行信息交換。其主要特點(diǎn)是:運(yùn)行速度快,容量小。
外存也稱為輔助存儲器,不能與CPU之間直接進(jìn)行信息交換。其主要特點(diǎn)是:存取速度相對內(nèi)存要慢得多,存儲容量大。
內(nèi)存與外存本質(zhì)區(qū)別是,一個是內(nèi)部運(yùn)行提供緩存和處理的功能,也可以理解為協(xié)同處理的通道;而外存主要是針對儲存文件、圖片、視頻、文字等信息的載體,也可以理解為儲存空間。緩存就是數(shù)據(jù)交換的緩沖區(qū) (稱作Cache),當(dāng)某一硬件要讀取數(shù)據(jù)時(shí),會首先從緩存中查找需要的數(shù)據(jù),如果找到了則直接執(zhí)行,找不到的話則從內(nèi)存中找。由于緩存的運(yùn)行速度比內(nèi)存快得多,故緩存的作用就是幫助硬件更快地運(yùn)行。
閃存 (Flash Memory)是一種長壽命的非易失性的存儲器,數(shù)據(jù)刪除不是以單個的字節(jié)為單位而是以固定的區(qū)塊為單位。閃存是電子可擦除只讀存儲器(EEPROM) 的變種,閃存與EEPROM不同的是,EEPROM能在字節(jié)水平上進(jìn)行刪除和重寫而不是整個芯片擦寫,而閃存的大部分芯片需要塊擦除。由于其斷電時(shí)仍能保存數(shù)據(jù),閃存通常被用來保存設(shè)置信息,如在電腦的B1OS(基本程序)、PDA(個人數(shù)字助理)、數(shù)碼相機(jī)中保存資料等。
內(nèi)存帶寬計(jì)算公式1:
帶寬=內(nèi)存核心頻率×倍增系數(shù)×(內(nèi)存總線位數(shù)/8)
內(nèi)存帶寬計(jì)算公式2:
帶寬=標(biāo)稱頻率×線寬 ÷ 8
DDR=雙倍速率同步動態(tài)隨機(jī)存儲器,是內(nèi)存的其中一種。DDR取消了主板與內(nèi)存兩個存儲周期之間的時(shí)間間隔,每隔2個時(shí)鐘脈沖周期傳輸一次數(shù)據(jù),大大地縮短了存取時(shí)間,使存取速度提高百分之三十。
SDRAM是 "Synchronous Dynamic random access memory"的縮寫,意思是“同步動態(tài)隨機(jī)存儲器",就是我們平時(shí)所說的“同步內(nèi)存"。從理論上說,SDRAM與CPU頻率同步,共享一個時(shí)鐘周期。SDRAM內(nèi)含兩個交錯的存儲陣列,當(dāng)CPU從一個存儲陣列訪問數(shù)據(jù)的同時(shí),另一個已準(zhǔn)備好讀寫數(shù)據(jù),通過兩個存儲陣列的緊密切換,讀取效率得到成倍提高。
DDR是SDRAM的更新?lián)Q代產(chǎn)品,采用5伏工作電壓,允許在時(shí)鐘脈沖的上升沿和下降沿傳輸數(shù)據(jù),這樣不需要提高時(shí)鐘的頻率就能加倍提高SDRAM的速度,并具有比SDRAM多一倍的傳輸速率和內(nèi)存帶寬。
DDR誤碼率測量
DDR(DDR1)-DDR SDRAM 于 2000 年推出,與其前身 SDR SDRAM(單速率 SDRAM)相比有了顯著的改進(jìn)。與 SDR SDRAM 相比,DDR1 的數(shù)據(jù)傳輸速率提高了一倍,從而實(shí)現(xiàn)了更快的內(nèi)存訪問速度并提高了系統(tǒng)性能。DDR1 模塊最初提供的數(shù)據(jù)傳輸速率范圍為 200 MT/s 至 400 MT/s(每秒兆次傳輸)。DDR1 內(nèi)存通常用于臺式計(jì)算機(jī)、筆記本電腦和早期的服務(wù)器系統(tǒng)。
DDR2 - DDR2 SDRAM 于 2003 年推出,在 DDR1 的基礎(chǔ)上進(jìn)一步提高了速度和效率。與 DDR1 相比,DDR2 的預(yù)取緩沖區(qū)大小增加了一倍,從而可以提高數(shù)據(jù)吞吐量。DDR2 模塊最初提供的數(shù)據(jù)傳輸速率范圍為 400 MT/s 至 800 MT/s。DDR2 內(nèi)存在中端到gaoduan計(jì)算系統(tǒng)中得到廣泛應(yīng)用,與 DDR1 相比,其性能和能效更高。
DDR3 - 2007 年發(fā)布的 DDR3 SDRAM 代表著內(nèi)存技術(shù)的又一次重大進(jìn)步。與 DDR2 相比,DDR3 進(jìn)一步提高了數(shù)據(jù)傳輸速率,同時(shí)降低了功耗。DDR3 模塊最初支持的數(shù)據(jù)傳輸速率從 800 MT/s 到 1600 MT/s,后來的速度最高可達(dá) 2133 MT/s。DDR3 內(nèi)存成為主流計(jì)算系統(tǒng)的標(biāo)準(zhǔn),在性能、能效和價(jià)格之間實(shí)現(xiàn)了平衡。
作為當(dāng)前市場主流的 DDR4標(biāo)準(zhǔn)和業(yè)界正在集中攻關(guān)的 DDR5標(biāo)準(zhǔn),對比有何差異呢?
如下表所列,從芯片開發(fā)到電路系統(tǒng)設(shè)計(jì)角度來看相比,DDR5 為了實(shí)現(xiàn)更高帶寬和吞吐量進(jìn)一步提升讀寫速率和改變通道架構(gòu)以及猝發(fā)讀寫長度,目前規(guī)劃的最高速率達(dá) 8400M T/s。
為了實(shí)現(xiàn)更低功耗和電源管理 I/O 電壓降到 1.1V,并在 DIMM 條上完成電源管理工作以實(shí)現(xiàn)更高 的電源效率(主要是縮短電源傳輸路徑以降低損耗和減小潛在的干擾)。為了提高數(shù)據(jù)帶寬,不僅 提升速率同時(shí)采用雙通道架構(gòu),提升讀寫效率,采用雙通道 32 data + 8 ECC,Burst Length 也從 4/8 提高到 8/16,最后還支持更高容量的 DRAM 器件,從 DDR4 16 Gb 加倍到 32 Gb??傊珼DR5 作為業(yè)界備受期望的第 5 代 I/O 的內(nèi)部數(shù)據(jù)共享和傳輸標(biāo)準(zhǔn)將與 PCI Express 5.0 乃至 6.0 等高速接口標(biāo)準(zhǔn)一起重塑 iABC 時(shí)代的大數(shù)據(jù)流的高速公路。
表 1 DDR4 和 DDR5 比較(源自 Rambus)
近年來,內(nèi)存與CPU性能發(fā)展之間的剪刀差越來越大,對內(nèi)存帶寬的需求日益迫切。DDR4在1.6GHz的時(shí)鐘頻率下最高可達(dá) 3.2 GT/s的傳輸速率,最初的 DDR5則將帶寬提高了 50%,達(dá)到 4.8 GT/s傳輸速率。DDR5 內(nèi)存的數(shù)據(jù)傳輸速率最終將會達(dá)到 8.4 GT/s。
降低工作電壓(VDD),有助于抵消高速運(yùn)行帶來的功耗增加。在 DDR5 DRAM 中,寄存時(shí)鐘驅(qū)動器 (RCD) 電壓從 1.2 V 降至 1.1 V。命令/地址 (CA) 信號從 SSTL 變?yōu)?PODL,其優(yōu)點(diǎn)是當(dāng)引腳處于高電平狀態(tài)時(shí)不會消耗靜態(tài)功率。
使用 DDR5 DIMM 時(shí),電源管理將從主板轉(zhuǎn)移到 DIMM 本身。DDR5 DIMM 將在 DIMM 上安裝一個 12 V 電源管理集成電路(PMIC),使系統(tǒng)電源負(fù)載的顆粒度更細(xì)。PMIC 分配1.1 V VDD 電源,通過更好地在 DIMM 上控制電源,有助于改善信號完整性和噪音。
DDR4 DIMM 具有 72 位總線,由 64 個數(shù)據(jù)位和 8 個 ECC 位組成。在 DDR5 中,每個 DIMM 都有兩個通道。每個通道寬 40 位,32 個數(shù)據(jù)位和 8 個 ECC 位。雖然數(shù)據(jù)寬度相同(共 64 位),但兩個較小的獨(dú)立通道提高了內(nèi)存訪問效率。因此,使用 DDR5 不僅能提高速度,還能通過更高的效率放大更高的傳輸速率。
圖 2 DDR5總線架構(gòu)和標(biāo)準(zhǔn)DDR5 RDIMM 內(nèi)存條
DDR4 的突發(fā)長度為4或者8。對于 DDR5,突發(fā)長度將擴(kuò)展到8和16,以增加突發(fā)有效載荷。突發(fā)長度為16(BL16),允許單個突發(fā)訪問 64 字節(jié)的數(shù)據(jù),這是典型的 CPU 高速緩存行大小。它只需使用兩個獨(dú)立通道中的一個通道即可實(shí)現(xiàn)這一功能。這極大地提高了并發(fā)性,并且通過兩個通道提高了內(nèi)存效率。
DDR4 在單芯片封裝(SDP)中的最大容量為16 Gb DRAM。而DDR5的單芯片封裝最大容量可達(dá)64 Gb,組建的DIMM 容量則翻了兩番,達(dá)到驚人的 256 GB。
應(yīng)用指南
無矢量測試:nanoVTEP 與 VTEP
本應(yīng)用指南總結(jié)了在客戶現(xiàn)場進(jìn)行的無矢量測試增強(qiáng)型探針 (VTEP) 早期測試的一些結(jié)果。
從物理層信號角度來看,DDR5主要有如下特點(diǎn):
1.采用分離式全速率時(shí)鐘,對應(yīng) 6400M T/s 頻率最高達(dá) 3.2GHz。
時(shí)鐘控制命令信號,選通信號控制數(shù)據(jù),如上圖示。
對時(shí)鐘信號抖動的要求更加嚴(yán)格,對各 種命令信號與數(shù)據(jù)和地址信號的時(shí)序要求也更高。
2.更寬的總線,單端信號,從 RCD(Registering Clock Drivers)芯片來看采用 Multi-Drop 架構(gòu)。
基于今天更寬的總線需求,在一塊刀片服務(wù)器上可能支持 1000+個并行數(shù)據(jù)通道。且由于 繼續(xù)采用單端信號且速率倍增,傳統(tǒng)只在串行差分電路上考慮的損耗問題也開始困擾 DDR5。因此 在 DDR5設(shè)計(jì)和驗(yàn)證測試上,不僅需要考慮傳統(tǒng)的串?dāng)_問題還增加了對電路損耗問題的考慮。
應(yīng)用指南
DDR5走線的正確受控阻抗是多少?
本文檔檢查了 DDR器件供應(yīng)商提出的受控阻抗建議,將這些建議與制造電路板上的阻抗進(jìn)行比較,并提供設(shè)計(jì)建議。 鑒于缺乏可用的 DDR5設(shè)計(jì),本案例研究重點(diǎn)關(guān)注現(xiàn)有開源 DDR4設(shè)計(jì)的阻抗。對供應(yīng)商建議的最大和最小阻抗范圍以及已制造的 DDR設(shè)計(jì)中的阻抗進(jìn)行了比較。 制造的開源板均具有在建議范圍內(nèi)的 DDR控制阻抗。
3.雙向復(fù)用的數(shù)據(jù)總線,讀寫數(shù)據(jù)分時(shí)復(fù)用鏈路。 囿于有限的鏈路通道和布板空間等資源讀寫操作繼續(xù)采用共享總線,因此需要分時(shí)操作。
從驗(yàn)證測試角度來看也需要分別對讀和寫信號進(jìn)行分離以檢查其是否滿足規(guī)范。
圖 4 DDR5 讀寫共享總線
4.猝發(fā) DQS 和 DQ 信號在更高速率的背景下在有限帶寬的鏈路傳輸時(shí)帶來更多 ISI 效應(yīng)問題。
在 DQS 讀寫前導(dǎo)位,猝發(fā)第一個 bit 等等均有不同的效應(yīng)和表現(xiàn)。此外考慮到存儲電路在設(shè)計(jì)上不同于串行電路存在較多的阻抗不匹配,因此反射問題或干擾帶來的 ISI 也會更嚴(yán)重。
圖 5 DDR5 在接收端采用更多的類似高速串行總線的信號處理
因此在接收側(cè)速率大于 3600M T/s 時(shí)采用類似高速串行電路和標(biāo)準(zhǔn)總線中已經(jīng)成熟的 DFE 均衡技術(shù),可變增益放大(VGA)則通過 MR 寄存器配置,以補(bǔ)償在更高速率傳輸時(shí)鏈路上的損耗。 DDR4標(biāo)準(zhǔn)采用的 CTLE 作為常用的線性均衡放大,雖然簡單易實(shí)現(xiàn)但是其放大噪聲的副產(chǎn)品也更 為常見,考慮到 DDR5總線里的反射噪聲比沒有采用。另外考慮到并行總線的串?dāng)_和反射等各信 號抖動的定義和分析也會隨之變化。
從測試角度來看,示波器是無法得到 TP2點(diǎn)即均衡后的信號的,而僅能得到 TP1點(diǎn)的信 號,然后通過集成在示波器上的分析軟件里的均衡算法對信號進(jìn)行均衡處理以得到張開的眼圖。 眼圖分析的參考時(shí)鐘則來自基于時(shí)鐘信號的 DQS 信號。另外眼圖測試也從以往僅對 DQ 進(jìn)行擴(kuò)展 到包括 CMD/ADDR總線。
以上我們介紹了 DDR5 的一些新的變化和挑戰(zhàn)。下面介紹一下 DDR5 的驗(yàn)證和測試的一些問題和解決方案。
當(dāng)前 DDR5 規(guī)范尚未wanquan制定完畢,DDR5 顆粒以及輔助 DB 和 RCD 芯片目前主要還在 DIMM 應(yīng)用階段,未進(jìn)入嵌入式系統(tǒng)階段。典型的 DDR5 生態(tài)系統(tǒng),涉及 DDR5總線的主要包括 DIMM 產(chǎn)品和系統(tǒng)集成產(chǎn)品。當(dāng)前主要有三種 DIMM 產(chǎn)品:UDIMM(Unbuffered DIMM),RDIMM(Registered DIMM),LRDIMM(Load-Reduced DIMM)。DDR5生態(tài)系統(tǒng)如下圖示:
圖 6 DDR5 生態(tài)系統(tǒng)
典型地在 DIMM 上,與 DDR5總線相關(guān)除了核心的顆粒 DRAM 之外,還有 DB(LRDIMM 上 用 buffer 芯片),RCD 等芯片。從上圖可以看到針對不同功能的芯片部件到 DIMM 直到系統(tǒng)級產(chǎn)品 集成,分別有不同的測試需求。比如針對 DRAM 顆粒以及 DB 和 RCD 等,需要進(jìn)行 TX,RX 及 Protocol 測試,而對整個 DIMM 產(chǎn)品而言則要進(jìn)行 RX 測試和協(xié)議測試。
下面我們就 DDR5 DIMM產(chǎn)品各主要芯片或部件的 DDR5總線測試進(jìn)行一個簡單介紹。
首先來看 DDR總線的發(fā)送端測試方法。這一測試主要是以 DRAM 芯片為目標(biāo)進(jìn)行,從 DRAM 芯片到 Memory Controller 芯片乃至系統(tǒng)級產(chǎn)品開發(fā)均存在測試需求。
探測問題
同其它標(biāo)準(zhǔn)一樣,我們首先要明確測試點(diǎn)的位置。在 DDR總線上,由于 CPU 作為系統(tǒng)核 心,通常是沒有辦法預(yù)留測試點(diǎn)進(jìn)行焊接或者采用專用夾具在系統(tǒng)上進(jìn)行探測的。因此 DDR總線 的測試一般都選擇在 DRAM 顆粒側(cè)進(jìn)行。當(dāng) Memory Controller 對 DRAM 進(jìn)行寫操作時(shí),寫信號經(jīng) 過一段走線到 DRAM, 在接收端進(jìn)行信號探測,因此實(shí)際測試的是 CPU 或 Memory Controller 發(fā)送 到顆粒側(cè)的信號。反之進(jìn)行讀操作時(shí),則從 DRAM 發(fā)出數(shù)據(jù)信號到 Memory Controller,因此是在 信號的發(fā)送端進(jìn)行探測,信號則可能存在反射問題。通常 JEDEC 規(guī)范定義的讀寫操作的信號指標(biāo) 即為上述定義。
圖 7 DDR5 BGA Probe 和板上安裝示意圖
即使在顆粒側(cè)進(jìn)行測試,在不同時(shí)代針對不同速率業(yè)界也采用過多種方法。從早期的片外 電阻端接點(diǎn)到預(yù)留測試點(diǎn)和過孔,再發(fā)展到 DDR3 和 DDR4 時(shí)代廣泛采用的 BGA Probe----DDR 測試 專用夾具。上圖即為 DDR5 BGA Probe 和板上安裝示意圖,該 BGA Probe 適用于 DDR5-4800 X8 DRAM 顆粒。通過 BGA Probe 將各信號引到夾具邊緣,然后用探頭焊接進(jìn)行測試。這一測試點(diǎn)是 zui接近 DRAM BGA 焊球處的信號,也就是說這一測試信號能夠準(zhǔn)確反映芯片對規(guī)范的遵從性。
即使 BGA Probe 夾具已經(jīng)提供了zui接近真實(shí)信號測試點(diǎn)的位置,然而依然存在誤差。因此 如果有 BGA Probe 的模型或 S 參數(shù),還可以用示波器上的去嵌功能進(jìn)行 De-Embed 操作。如下圖 示:
圖 8 InfiniiSim 用于 DDR BGA Probe 去嵌示意圖
Keysight 實(shí)時(shí)示波器上的 D9020ASIA 選件中的 InfiniiSim 功能可以提供功能強(qiáng)大的去嵌,下圖展示的是一個 DDR4眼圖實(shí)測效果對比,采用 InfiniiSim 去嵌后眼圖在水平方向上裕量有顯著提高:
圖 9 InfiniiSim 去嵌功能與眼圖測試對比
Infiniium UXR-B 系列示波器
Infiniium UXR-B 系列示波器
在針對 DDR信號的測試上,示波器探頭選擇也是非常有講究的地方。
高帶寬有源探頭通常根據(jù)其負(fù)載模型有 RC(下圖中紅色跡線)和 RCRC(下圖中藍(lán)色跡線)的區(qū) 別,如下圖示。Keysight 113X/116X 探頭均采用 RC模型,表現(xiàn)為寬頻帶高阻抗特性。RCRC類探頭,典型地如 N7000A 系列和 N280X 系列,具有高 DC 阻抗,中頻帶阻抗則明顯低于 RC 探頭,為 K? 級。
圖 10 RC 與 RCRC 探頭阻抗曲線示意圖
考慮到 DDR總線空閑時(shí)呈 High Z 狀態(tài),動態(tài) ODT 使 DRAM 可以在高或低端接阻抗之間切 換。 在 High Z 狀態(tài)端接阻抗變高時(shí),探頭阻抗需要足夠高以降低探頭負(fù)載效應(yīng),探頭阻抗偏低對電路不能形成足夠高阻從而產(chǎn)生假信號。下面兩幅圖分別對比采用 RCRC探頭和 RC探頭進(jìn)行測試時(shí)的波形。
圖 11 RCRC探頭和 RC探頭 DDR波形測試對比
除了探頭的阻抗特性外,考慮到 DDR5顆粒的體積越來越小帶來的封裝越來越小型化,對 探頭前端尺寸的小型化要求也越來越高。
Keysight 最新推出的 MX0023A 25GHz 帶寬 RC 探頭,配合最新的 MX0100A 焊接前端,推薦 用于 DDR5 測試。 MX0100A 前端間距在 0-7mm 范圍內(nèi)可調(diào)節(jié),與 MX0023A 配合使用帶寬可達(dá) 25GHz,與 1169B 配合使用可達(dá) 13Ghz。另外該前端工作范圍從-55 °C 到+155 °C,支持進(jìn)行高低溫 測試(配合長達(dá) 1 米的 N5450B 高低溫延長電纜)。
MX0025A InfiniiMax Ultra 探頭放大器,25 GHz
圖 12 Keysight MX0023A RC 探頭和 MX0100A 焊接前端及業(yè)界其它廠家前端尺寸對比
重點(diǎn):采用 RC 類型探頭對 DDR總線進(jìn)行探測是確保獲得精確測量的基礎(chǔ)保障。
2. DDR總線測試的難點(diǎn) - 讀寫分離問題
讀寫分離一直是 DDR總線測試的難點(diǎn)。由于 DDR總線一直采用讀寫數(shù)據(jù)共享數(shù)據(jù)總線, 而 JEDEC 規(guī)范針對讀寫操作制定了不同的指標(biāo),因此如果需要對被測器件和設(shè)備進(jìn)行準(zhǔn)確測試就 必須分別對讀和寫進(jìn)行分開測試。一種方法是 Memory Controller 可以編程只進(jìn)行讀或?qū)懖僮饕苑?別進(jìn)行測試。另外一種方法就是在示波器上根據(jù)讀和寫信號的特點(diǎn)設(shè)置恰當(dāng)?shù)挠|發(fā)進(jìn)行分離。我 們來看看第二種方法。
在過往 DDR3 和 DDR4總線上,主要采用 DQS 前導(dǎo)位或者 DQS 和 DQ 的相位差進(jìn)行分離。 在 DDR5總線上,DQS 和 DQ 在讀寫操作時(shí)沒有相位差,DQS 的讀寫操作的前導(dǎo)碼也是相同的, 因此在 DDR5總線上的讀寫分離是一個難點(diǎn)。
當(dāng)前 Keysight 根據(jù) JEDEC DDR5 規(guī)范真值表,在讀和寫操作時(shí),CA4 有差異,如下圖紅色方 框標(biāo)準(zhǔn),讀時(shí)高,寫時(shí)低。另外再根據(jù)讀和寫操作時(shí)的 Latency 差異進(jìn)行讀寫分離。
Command Truth Table
表 2 JEDEC 規(guī)范命令真值表
圖 13 DDR5總線讀寫時(shí)序和 Latency 差異
重點(diǎn):如果要對 DDR5總線的讀寫操作進(jìn)行有效分離,相比以往DDR標(biāo)準(zhǔn)采用最少 3 根探頭 (CLK,DQS,DQ)進(jìn)行信號測試連接,在 DDR5 則需要增加 CA4 連接和探測,也就是說需要 4根探頭進(jìn)行測試!
3.信號分析和算法方面的變化 DDR5 相比以往DDR標(biāo)準(zhǔn)在時(shí)鐘和控制及數(shù)據(jù)信號的分析等也有很多進(jìn)展。
首先來看全新的抖動定義。
全新的抖動定義
考慮到 DDR5全速率時(shí)鐘架構(gòu),因此在 DQS/DQ/CLK 等信號抖動的測量上相比以往DDR標(biāo)準(zhǔn)提出了新的定義。
抖動基礎(chǔ)知識:抖動源、類型和特征
圖 14 DDR5 規(guī)范中 UI定義
特別地,對時(shí)鐘而言,一個周期計(jì)作 2 個 UI.
圖 15 UI Jitter 定義
UI Jitter 定義為任一個周期相對理想值的偏差,類似于經(jīng)典抖動定義中的 Period Jitter,周期抖動。
UI-UI Jitter 則類似于經(jīng)典抖動定義中的 Period-Period Jitter,是 UI 的微分。
而 Accumulated Jitter 則類似于經(jīng)典抖動定義中的 TIE Jitter,時(shí)間間隔誤差抖動,是長期抖動的積分。
– 可以測量數(shù)據(jù)眼高和眼寬
– 用戶還可以根據(jù)器件規(guī)范定義自己的眼圖模板
– 如果眼圖不符合模板,那么一致性應(yīng)用軟件可以報(bào)告不合格狀態(tài)
DDR4 規(guī)范考慮了抖動和 BER 的關(guān)鍵作用。計(jì)算抖動 BER 測量結(jié)果很重要,它可以統(tǒng)計(jì)測量總體抖動(確定性抖動+隨機(jī)抖動),了解設(shè)計(jì)的數(shù)據(jù)有效窗口結(jié)果和可能出現(xiàn)錯誤的概率。
除了規(guī)范測試,采用正確的測試過程和方法也是至關(guān)重要的。例如,示波器探頭的正確放置會影響一致性測試結(jié)果以及設(shè)計(jì)裕量的準(zhǔn)確表征和測試。對于 JEDEC 規(guī)范,最佳探測點(diǎn)位于 DRAM封裝的球上(不在傳輸線或通道上,也不在存儲器控制器上)。
仿真是測試過程中的另一個重要卻經(jīng)常被忽略的步驟。隨著總線速度的提高以及獲得盡量多裕量的需求,仿真過程可以很大程度地幫助減少設(shè)計(jì)周期和成本。
例如,仿真有助于確保系統(tǒng)能夠容忍內(nèi)插器的負(fù)載效應(yīng)。這一步驟評測所測量的帶寬/頻率響應(yīng),確保內(nèi)插器不會斷開總線。
最后,是德科技與 JEDEC 組織密切合作,以確保其測試和測量解決方案與 JEDEC 標(biāo)準(zhǔn)的測試和測量規(guī)范保持高度一致。
圖 2. 然后將具有適當(dāng)負(fù)載效應(yīng)的仿真設(shè)計(jì)與原型的實(shí)際掃描結(jié)果進(jìn)行比較,確定系統(tǒng)正常運(yùn)行。
眼圖測試
確定性抖動(DJ)通常是有界而可預(yù)測的,可以與數(shù)據(jù)流相關(guān)聯(lián),例如符號間干擾和占空比失真。隨機(jī)抖動(RJ)屬于高斯分布并且是無界的。與任何高斯分布一樣,隨著總量的增加,分布的峰-峰值也會增加。因此,總體抖動(TJ)等于確定性抖動 DJ 加上隨機(jī)抖動 RJ 與 BER乘積。了解抖動的組成和來源可以幫助設(shè)計(jì)人員降低設(shè)計(jì)中抖動的發(fā)生率,確保更好的數(shù)據(jù)性能。
3.1 發(fā)送端TX測試挑戰(zhàn)
3.1.1 讀寫分離
由于規(guī)范規(guī)定DDR5,不再像傳統(tǒng)的DDR一樣,讀寫在pin腳處有嚴(yán)格的相位差別。所以使用DQS-DQ 相位差和前置信號模式的傳統(tǒng)方法可能不再適用,需要采用新方法進(jìn)行讀寫數(shù)據(jù)分離。
根據(jù)真值表可以看出,CA4在讀寫操作過程中有不同的邏輯電平,所以可以根據(jù)CA4的狀態(tài)來結(jié)合讀寫延遲來進(jìn)行讀寫分離。
3.1.2新增的測試參數(shù)
由于速率的提高,可能需要新的測試參數(shù)來鑒定關(guān)鍵信號。抖動成為關(guān)鍵信號的重要組成部分。規(guī)范定義了全新的UI抖動定義。
以及針對該UI的測量算法。
UI的測量項(xiàng)將覆蓋CLK(input)、DQS(tx)和DQ(tx) 信號,且要求非常嚴(yán)格。
根據(jù)下表的計(jì)算,按照DDR5 4800的速率為例,要求測量出來的Rj最大值為0.0037UI,也就是769.6fs。
如此高要求的測量結(jié)果,也對儀表本身的性能提出了非常高的要求。儀表的抖動測量本底計(jì)算公式如下,可以看出示波器的本底噪聲以及本底抖動,對抖動測量起了非常大的影響。
是德科技UXR旗艦級實(shí)時(shí)示波器,具有25fs的極低本底抖動,165μV(rms)(16G帶寬下) 的本底噪聲。可以提供可靠的DDR5的相關(guān)抖動測試。
實(shí)時(shí)示波器――合規(guī)性測試
3.1.3 測試方法
DDR的TX測量手法,一直是我們所關(guān)心的內(nèi)容。在DDR4以前,規(guī)范規(guī)定的測試點(diǎn),均在DRAM的ball處。DDR5里,除了眼圖測試以外,其他測試點(diǎn)沒有做額外更新。
我們推薦使用interposer的方式來進(jìn)行測量,如下圖所示。
測量完成后,通過S參數(shù)的數(shù)學(xué)計(jì)算,實(shí)現(xiàn)從實(shí)測點(diǎn)到理論測試點(diǎn)的波形轉(zhuǎn)換。
而針對于DDR5的眼圖測試,如果打開了DFE功能,示波器可以在去嵌的基礎(chǔ)上,進(jìn)一步完成均衡的操作,最后得到需要的波形。
當(dāng)然,是德科技已經(jīng)提供自動化的測試App,方便的給用戶提供可視化的一鍵測試方案。
3.1.4 控制器測試新場景
由于信號速率的不斷提升,控制器、鏈路、芯片,紛紛加入了測試大軍。下圖展示了針對于控制器、PCB互聯(lián)鏈路的TX測試場景,通過示波器,配合夾具的使用,來實(shí)現(xiàn)發(fā)送端的信號質(zhì)量測試。
3.2.1 接收端新技術(shù)
以往的高速串行鏈路設(shè)計(jì)中,我們知道隨著速率的不斷提升,鏈路的損耗,以及ISI,對高頻分量的影響越來越大,所以在PCIE Gen3的時(shí)候,引入了接收端均衡的概念,用于彌補(bǔ)高頻分量的損失。
具體來看,有下面幾點(diǎn)。①是接收端的信號會先經(jīng)過CTLE(連續(xù)時(shí)間線性均衡)均衡,圖上展示的是具有7個DC gain的CTLE曲線。然后信號會一分為二,一部分給到CDR②,CDR中的核心PLL的OJTF函數(shù)是一個類似左邊的高通濾波器。信號的另一部分信號會給到③具有一個tap的DFE(panjue反饋均衡)。
我們特別注意一下圖里標(biāo)識的2個測試點(diǎn),一個是TP2,一個是TP2`。通常TP2是使用示波器真實(shí)捕獲到的信號,而TP2`則是使用標(biāo)準(zhǔn)的參考接收機(jī)模型,來去復(fù)原芯片真實(shí)看到的波形。那這種均衡技術(shù)對DDR5是否有參考借鑒的意義呢?
首先看一下DDR5相對于傳統(tǒng)serdes技術(shù)有什么特殊的地方。
了解了DDR5和傳統(tǒng)Serdes的幾個特別之處外,參考在PCIE上使用的均衡技術(shù),進(jìn)行了部分調(diào)整后如下。
首先是CDR,由于系統(tǒng)里有了顯示時(shí)鐘,可以使用不具有頻率跟蹤能力的DLL模塊,來代替原先復(fù)雜的CDR模塊。
第二個是CTLE,雖然CTLE實(shí)現(xiàn)簡單,但是考慮到單端的DDR5總線里的反射和串?dāng)_等,對信噪比惡化嚴(yán)重,所以使用了VGA可變增益放大器來代替CTLE。
第三個是借鑒了成熟的DFE均衡技術(shù)。最后一個,沿用了DDR以往的write leveling和read leveling機(jī)制。把原先在接收端實(shí)現(xiàn)的去加重功能放在了控制器端來實(shí)現(xiàn)。
3.2.2 接收端測試的新挑戰(zhàn)
傳統(tǒng)的Serdes接收端測試(以PCIe為例),目的是確定DUT能否在芯片封裝的ball處(或者CEM規(guī)范的金手指處)可靠接收帶有zhidin受損的信號,達(dá)到要求的誤碼率要求。
針對DDR的單端并行總線系統(tǒng),非相關(guān)抖動、電平干擾、ISI、串?dāng)_、反射,對于系統(tǒng)的可靠運(yùn)行至關(guān)重要。DDR5的接收端測試,不僅包括了壓力眼測試,也就是在給定的壓力眼信號下,達(dá)到特定的誤碼率要求,還包括了幅度電壓方面和水平抖動方面的靈敏度測試。
而被測DUT,可以是控制器、DRAM、緩沖器/寄存器、DIMM 等。
3.2.3 接收端測試的新方法
規(guī)范定義了接收端測試?yán)锏乃袦y試點(diǎn)要求,以及波形在均衡器之后的指標(biāo)要求。測試前,需要按照規(guī)范的要求進(jìn)行校準(zhǔn)。
校準(zhǔn)之前,考慮到DDR總線的特殊性。ODT 會用于優(yōu)化發(fā)送端到接收端的信號質(zhì)量,由于其允許不同的阻抗設(shè)置,接收端測試過程中,建議使用 48 歐姆進(jìn)行校準(zhǔn),以盡量減少與標(biāo)準(zhǔn)測試設(shè)備之間的不匹配。在此假設(shè)下,通過電平和抖動的 BERT 設(shè)置來調(diào)整信號的形狀,實(shí)現(xiàn)壓力信號的產(chǎn)生。
是德科技提供以M8000系列誤碼儀為基礎(chǔ)的DDR5接收端測試方案,支持控制器、DRAM、緩沖器/寄存器、DIMM的測試。
3.2.4 接收端測試的校準(zhǔn)
下圖是DDR在系統(tǒng)產(chǎn)品中實(shí)際應(yīng)用的拓?fù)浣Y(jié)構(gòu)。依次從DDR控制器,經(jīng)過PCB路徑,來到DIMM上的DRAM顆粒。
DDR在系統(tǒng)產(chǎn)品中實(shí)際應(yīng)用的拓?fù)浣Y(jié)構(gòu)
做校準(zhǔn)的時(shí)候,也是參考上圖的拓?fù)鋪硗瓿烧麄€路徑的模擬。針對DIMM或者顆粒而言,信號由BERT發(fā)出,經(jīng)過CTC2 Board和replicate card,最終由示波器接收,組成完整的端到端鏈路。
這里要特別說明的是,針對不同的產(chǎn)品測試,有對應(yīng)的夾具來進(jìn)行配合。主要的夾具有如下幾種。分別是下圖中的C2C test card,System Motherboard Test Fixture,Device Validation Fixture。
其中,CTC2 test card提供DIMM插座,同時(shí)將DIMM上所有信號包括CA/CMD、DQS,DQ通過SMP連接器的形式引出。用于DIMM、RCD測試夾具、Data Buffer測試夾具、DRAM測試夾具等的校準(zhǔn)和測試。
CTC2 test card
System Motherboard Test Fixture也同樣把CA/CMD、DQS,DQ的信號通過SMP的方式引出,用于控制器的發(fā)送端測試,以及控制器的接收端測試校準(zhǔn)和測試,同時(shí)還支持系統(tǒng)主板的通道特性驗(yàn)證。
System Motherboard Test Fixture
Device Validation Fixture包括了RCD的測試夾具,Data Buffer的測試夾具,DRAM的測試夾具,以及Combo測試夾具等。主要用于單個器件產(chǎn)品的校準(zhǔn)與測試,以及多器件的校準(zhǔn)與測試。測試時(shí)插在CTC2的test card上。
Device Validation Fixture
下圖展示的是基于CTC2 test card進(jìn)行的校準(zhǔn)操作。連接方式如圖所示。
使用M80885RCA自動化軟件,根據(jù)向?qū)?,完成測試環(huán)境參數(shù)的setup,并對DUT進(jìn)行初始化。
一步一步,實(shí)現(xiàn)DQS&DQ和CK&CA的各參數(shù)自動化校準(zhǔn)。完成自動化校準(zhǔn)后,可以查看每個校準(zhǔn)項(xiàng)目的測試結(jié)果,如下圖所示。
3.2.5 接收端測試
接收端測試包括兩大部分測試內(nèi)容,Sensitivity測試和Stressed Eye測試。其中Sensitivity測試又包含Voltage Sensitivity和Jitter Sensitivity。
DQS和DQ的Voltage Sensitivity測試中,測試DQS的時(shí)候保持DQ的信號不變,測試DQ的時(shí)候保持DQS的信號不變。不斷調(diào)整另外一個參數(shù)的變量,遍歷整個參數(shù)的范圍后,統(tǒng)計(jì)誤碼率。
DQS的Jitter Sensitivity測試中,首先輸出clean的clk和dq。在此基礎(chǔ)上,遍歷DQS和DQ的相位,計(jì)算出本底jitter的Sensitivity測試。然后依次改變DCD和Rj以及DCD和Rj的組合,遍歷DQS和DQ的相位,完成各種場景下的jitter Sensitivity測試。
Stressed Eye測試中,使用校準(zhǔn)過程中的壓力信號(如下圖),來進(jìn)行環(huán)回誤碼率測試。
測試完成后,M80885一致性軟件會給出上圖右側(cè)的測試結(jié)果與測試報(bào)告。
是德科技可以給大家?guī)硗暾亩说蕉私鉀Q方案。包括設(shè)計(jì)前期的仿真,涵蓋了memory designer的建模和ADS的前后仿真。發(fā)送端測試中,我們提供業(yè)內(nèi)旗艦級性能指標(biāo)的UXR實(shí)時(shí)示波器和高性能的RC模型探頭,有效降低測試負(fù)載。接收端測試中,我們提供all-in-box的M8000系列誤碼儀,支持控制器、DRAM、Data Buffer、RCD、DIMM的接收端校準(zhǔn)與測試。協(xié)議分析儀方面,U4164A系列,支持完整的DDR、LPDDR的協(xié)議解碼測試。